CLASS: B.Sc./B.A.-III Year V Sem NAME OF PAPER - GROUPS AND RINGS PAPER CODE (for B.Sc.) - CML-506(i) | SR. | MONTEN | PAPER COD | $E \text{ (for B. A.)} - \underline{BAMH-301(i)}$ | |-----|-----------------|---|---| | NO. | MONTHS | PERIOD | TOPICS | | 1. | 1 st | 1 st week | 1. Definition of a group. Example of abelian and non-abelian groups. The group Z_n of integers under | | | | 2 nd week 3 rd week Last week | addition modulo n and the group of (n) of units under multiplication modulo n. 2. Generator of a group. Cyclic groups. 3. Permutations groups. Alternating groups, Cayley's theorem. Subgroups and Subgroup criteria. | | 2. | 2 nd | | 4. Cosets, Left and right cosets, properties of cosets. | | _, | 4 | 1 st week | Index of a sub-group. Coset decomposition | | | | 2 nd week | Lagrange's theorem on groups and its consequences, Normal subgroups, Quotient groups | | | | 3 rd week | Homomorphisms, isomorphisms, automorphisms on group. | | | , | Last week | Center of a group and class equation of a group and
derived group of a group. | | 3. | 3 rd | 1 st week | Introduction to Rings, Subrings, Integral domains and Fields | | | | 2 nd week | 2. Characteristics of a ring. Ring homomorphisms, | | | | 3 rd week | Theorems on Ring homomorphisms. 3. Ideals (Principle, Prime and Maximal) and Quotient | | | | Last week | rings, 4. Field of quotients of an integral domain | | 4. | 4 th | 1st week | 1. Euclidean rings, Polynomial rings, Polynomials over | | | | 2 nd week | the rational field 2. The Eisenstein's criterion of irreducibility of | | | , | 3 rd week | polynomials over the field of rational numbers 3. Polynomial rings over commutative rings. Principal | | | 3 | Last week | ideal domain,4. Unique factorization domain. | Mije la. ## CLASS:<u>B.Sc./B.A.-II Year IIISem</u> NAME OF PAPER – Differential Equations PAPER CODE -C24MAT301T | SR. | PAPER CODE -C24MAT301T | | | | |-----|------------------------|---|---|--| | NO. | MOUTH | PERIOD | TOPICS | | | 1. | 1 st | 1 st week 2 nd week 3 rd week Last week | Geometrical meaning of a differential equation. Exact differential equations, integrating factors. First order higher degree equations solvable for x,y,p Lagrange's equations, Clairaut's equations. Equations reducible to Clairaut's form. Singular solutions. Linear differential equations with constant coefficients. Homogeneous linear ordinary differential equations. Equations reducible to homogeneous. | | | 2. | 2 nd | 1 st week 2 nd week 3 rd week Last week | Ordinary simultaneous differential equations. Solution of simultaneous differential equations. Partial differential equations: Formation, order and degree Linear and Non-Linear Partial differential equations of the first order: Complete solution, singular solution, General solution, Solution of Lagrange's linear equations, Charpit's general method of solution. Linear partial differential equations of second and higher orders | | | 3. | 3 rd | 1 st week 2 nd week 3 rd week Last week | Linear and non-linear homogeneous and non homogeneous equations with constant coefficients, Partial differential equations with variable coefficients reducible to equations with constant coefficients, Their complimentary functions and particular integrals. Classification of linear partial differential equations of second order, hyperbolic, parabolic and elliptic types, | | | 4. | 4 th | 1 st week 2 nd week 3 rd week Last week | Reduction of second order linear partial differential equations to Canonical (Normal) forms and their solutions. Cauchy's problem for second order partial differential equations, Characteristic equations and characteristic curves of second order partial differential equations. Revision | | Moju Ren NAME OF PAPER - SEC-Special functions and transform techniques (Theory) | SR. | 7.5. | PAPER (| CODE - C24SEC329T (i) | | | |-----|-------------------|---|--|--|--| | NO. | MONTHS | PERIOD | TOPICS | | | | 1. | 1 st , | 1 st week 2 nd week 3 rd week Last week | Series solution of differential equations – Power Series Method. Series solution of differential equations – Power Series Method. Bessel differentials equations and their solutions Bessel differentials equations and their solutions | | | | 2. | 2 nd | 1 st week 2 nd week 3 rd week Last week | Legendre differentials equations and their solutions Hermitedifferentials equations and their solutions. Laplace Transforms Laplace Transforms | | | | 3. | 3 rd | 1 st week 2 nd week 3 rd week Last week | First Shifting Theorem, Change of Scale property, Inverse Laplace Transform, Inverse Laplace Transform, | | | | 4. | 4 th | 1 st week 2 nd week 3 rd week Last week | Multiplication by tⁿ, convolution Theorem Application to Differential equation. Application to Differential equation. Revision | | | # NAME OF PAPER – Special Functions and Transform Techniques LabPAPER CODE - C24SEC329P (i) | NO. 1. | 1 st | PERIOD | TOPICS | |--------|-----------------|----------------------|--| | 1. | 1 st | 1 | | | | | 1 st week | | | | • | 1 Week | 1. Basics of Python | | | | 2 nd week | 2. Basics of Python | | | | | 3. Basics of Python | | | | 3 rd week | 4. Basics of Python | | | , | Last week | | | 2. | 2 nd | 1st week | 1. Practical problems for plotting of the Bessel's | | | | - nd | functions of first kind of order 0 to 3. | | | | 2 nd week | 2. Practical problems for plotting of the Bessel's | | | | 3 rd week | functions of first kind of order 0 to 3. | | | | | 3. Practical problems to find zeros of Bessel's function | | | | Last week | of first and second kind. | | | | | 4. Practical problems to find zeros of Bessel's function | | 2 | 3 rd | a st | of first and second kind. | | 3. | 3.4 | 1 st week | 1. Practical problems to find zeros of first derivative of Bessel function of first kind and Legendre's polynomial. | | | 3 | 2 nd week | Practical problems to find zeros of first derivative
of Bessel function of first kind and Legendre's
polynomial. | | - 1 | | | 3. Practical problems for plotting of Legendre | | | | 3 rd week | polynomial for n=1 to 5 in the interval [0,1] and verifying graphically that all roots of Legendre | | | | | polynomial lie in the interval [0,1]. | | | | Last week | 4. Practical problems for plotting of Legendre | | - 1 | | | polynomial for n=1 to 5 in the interval [0,1] and | | | | | verifying graphically that all roots of Legendre | | | | | polynomial lie in the interval [0,1]. | | 1. | 4 th | 1 st week | 1. Practical problems related to coefficients of | | | | and . | Legendre polynomial. | | | | 2 nd week | Practical problems based on plotting of Hermite's
polynomial. | | | | 3 rd week | 3. Practical problems related to Laplace Transforms | | | | Last week | 4. Revision | Tojle, # NAME OF PAPER – Applications of Mathematical Statistics in daily life PAPER CODE COMPOSITOR | SR. | Morre | PAPER | CODE - C24MDC319T | | |-----|------------------------|---|---|--| | NO. | MONTHS | PERIOD | TOPICS | | | 1. | 1 st | 1 st week 2 nd week 3 rd week Last week | Introduction to Statistics:-Definition and Importance, Applications of Statistics in Real Life (e.g., business, health, sports, education) Types of Data: Qualitative vs. Quantitative Data, Discrete vs. continuous Data, Primary and Secondary Data, | | | 2. | 2 nd | 1 st week 2 nd week 3 rd week Last week | Organizing Data: Frequency Distribution Tables, Grouped and ungrouped Data. Measures of Central Tendency:-Mean (Arithmetic Average): Calculation for Ungrouped Mean (Arithmetic Average)Calculation forGrouped Data | | | 3. | 3 rd | 1 st week 2 nd week 3 rd week Last week | Median: Finding the Middle Value for Ungrouped Data, Median: Finding the Middle Value for Grouped Data, Mode: Identifying the Most Frequent Value Measures of Dispersion:- Range -Definition and Calculation | | | 4. | 4 th | 1 st week 2 nd week 3 rd week Last week | Variance - Concept and Basic Calculation for Ungrouped Data, Standard Deviation- Concept and Basic Calculation for Ungrouped Data Interquartile Range (IQR)- Understanding Quartiles and Spread of Data Revision | | Mijele. # CLASS:<u>B.Sc./B.A.-I Year ISem</u> NAME OF PAPER – Basic Algebra and Number Theory PAPER CODE - C24MAT101T | | | PAPER | CODE - C24MAT1011 | |------------|-----------------|----------------------|--| | SR.
NO. | MONTHS | PERIOD | TOPICS | | 1. | 1 st | 1 st week | Symmetric, Skew- symmetric, Hermitian and Skew-
Hermitian matrices, | | | 1 | 2 nd week | 2. Elementary operations on matrices, rank of a matrix. Row rank and column rank of a matrix. | | | | 3 rd week | 3. Eigen values, eigenvectors and the characteristic | | | | Last week | Minimal polynomial of a matrix. Cayley Hamilton theorem and its use in finding the inverse of a matrix. | | 2. | 2 nd | 1 st week | Applications of matrices to a system of linear (both homogeneous and non-homogeneous) equations. | | | | 2 nd week | Theorems on consistency of a system of linear equations. | | | | 3 rd week | 3. Unitary and Orthogonal Matrices. | | | | Last week | Relations between the roots and coefficients of general
polynomial equation in one variable. | | 3. | 3 rd | 1 st week | Solutions of polynomial equations having conditions on
roots. | | | 6 | 2 nd week | 2. Common roots and multiple roots. Nature of the roots | | | | 3 rd week | of an equations, 3. Solutions of cubic equations (Cardon's method). | | | | Last week | 4. Biquadratic equations and their solutions (Ferrari's Method). | | 4. | 4 th | 1 st week | Divisibility, G.C.D. (greatest common divisors), L.C.M.
(least common multiple), problems based on prime | | | | 2 nd week | numbers | | | | 3 rd week | 2. Fundamental Theorem of Arithmetic. Linear | | | | 3 week | Congruence, 3. Euler's Theorem, Fermat's theorem. Wilson's theorem | | | | Last week | and its converse. | | | | | 4. Chinese Remainder Theorem. | Miju la #### NAME OF PAPER - Vector Calculus and Solid Geometry Lab | | PAPER CODE - C24SEC129P | | | | | |------------|-------------------------|----------------------|--|--|--| | SR.
NO. | MONTHS | PERIOD | TOPICS | | | | 1. | 1 st | 1 st week | 1. Basics of Python | | | | | | 2 nd week | 2. Basics of Python | | | | | | 2 week | 3. Basics of Python | | | | | | 3 rd week | 4. Basics of Python | | | | | | Last week | | | | | 2. | 2 nd | 1 st week | Area of Parallelograms using scalar product. | | | | | | | Area of Parallelograms using scalar product. | | | | | | 2 nd week | 3. Work done by a force using scalar product. | | | | | | 3 rd week | 4. To plot 2-D and 3-D vector field. | | | | | | Last week | | | | | 3. | 3 rd | 1st week | 1. Find the volume of a parallelepiped using triple | | | | | | 2 nd week | product of vectors. 2. Find the gradient of scalar function and its plotting. | | | | | | 2 Week | 3. Find the gradient of scalar function and its plotting. | | | | | | 3 rd week | 4. Find the curl of vector function and its plotting. | | | | | | Last week | | | | | 4 | 4 th | 1 st week | 1. Tracing of a sphere of given equation. | | | | 4. | 4 | | Tracing of right circular cylinder of given equation. | | | | | | 2 nd week | Find the center and radius of sphere. | | | | | | 3 rd week | 4. Find the radius of right circular cylinder | | | | | | Last week | | | | Mojule ### CLASS: B. Com I Year ISem NAME OF PAPER – Business Mathematics | SR. | NEO | PAPER | CODE - C24SMIC103T | |-----|------------------------|---|---| | NO. | MONTHS | PERIOD | TOPICS | | 1. | 1 st | 1 st week 2 nd week 3 rd week Last week | Logarithms: Definition, Laws, Common Algorithms, Parts of Common Algorithms-Characteristics,
Mantissa; Anti-logarithms: Methods of finding anti-
logarithm. | | 2. | 2 nd | 1 st week 2 nd week 3 rd week Last week | Annuity, Annuity, Compound Interest Arithmetical Progression- General term, | | 3. | 3 rd | 1 st week 2 nd week 3 rd week Last week | Arithmetical Progression- Sum of finite numbers, Arithmetic Mean Geometrical Progression- nth term of G.P., Geometrical Progression: Sum of first terms, Sum to infinity, Geometric mean. Matrices: Definition of matrices: Types of matrices; | | 4. | 4 th | 1 st week 2 nd week 3 rd week Last week | Algebra of matrices; Algebra of matrices; Determinants: Properties of determinants. | Nojula.